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A REVIEW OF MACHINE LEARNING AND OLFACTORY TECHNOLOGIES FOR
RAPID VEGETABLE DISEASE DETECTION

Abstract. Plant disease detection is crucial to modern-day agriculture because timely
diagnosis can reduce the loss of crops to an appreciable level and improve productivity. This
review presents advanced disease detection systems based on machine learning techniques and
multimodal data analysis. A comprehensive comparison of different machine learning algorithms,
including convolutional neural networks (CNNs), transfer learning models, and object detection
methods like YOLO, has been done. This study demonstrates that combining visual data with the
analysis of volatile organic compounds (VOC) enhances the accuracy and reliability of the
diagnosis. This provides opportunities for the actual development of satellite and cheap systems
for monitoring operable in the field. Theoretically, this work contributes to developing strategies
for integrating heterogeneous data and optimizing deep neural network models to make them
lightweight and effective. The review emphasizes developing scalable and adaptive technologies
for plant disease detection within precision agriculture.

Keywords: plant disease detection, machine learning, convolutional neural networks,
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Introduction.

The rapid detection of plant diseases, particularly in vegetables, plays a crucial role in
ensuring both food security and agricultural sustainability. Traditional diagnostic methods, such
as visual inspection, microscopy, and biochemical analysis, are widely used but have significant
drawbacks. These methods tend to be slow, labor-intensive, and susceptible to human error,
especially when differentiating between diseases with similar symptoms or when infections are in
their latent stages. Moreover, these approaches often result in delayed interventions, which can
exacerbate the spread of diseases and lead to substantial crop losses. With the increasing demand
for quicker and more reliable plant disease detection, advances in computer science, particularly
machine learning (ML) and computer vision (CV), have emerged as transformative solutions.

Recent research has pointed out that deep learning techniques, such as CNN, can effectively
automate the process of plant disease detection through plant leaves images. This method has
identified diseases using their symptoms, which were visible; hence, these techniques became
effective and less time-consuming than the traditional methods. The process usually starts by
acquiring high-resolution images of both healthy and infected plants, mostly using Internet of
Things-enabled sensors deployed in agricultural fields. High-quality images are quite essential for
the perfection of disease detection; hence, different pre-processing steps like noise reduction,
distortion correction, and color space conversion are performed to optimize the images for further
analysis [1]. These systems save a lot of money, reduce laborious work, and offer quicker and
more accurate results, hence improving the overall management of crop health by automating
disease diagnosis [2]. For example, deep learning in plant disease detection is feasible with an
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incredible accuracy of 99.35% [3]. Another interesting aspect reviewed was the integration of 10T-
based sensors and imaging technologies for real-time data collection in the field and monitoring
of diseases [4].

Purpose and objectives:

The study aims to analyze and compare existing machine learning and olfactory technologies
for vegetable disease detection in terms of their strengths, weaknesses, and applications for real-
world agricultural purposes. The main objectives are as follows:

» To assess the feasibility of CNNs and other deep learning techniques for plant disease
recognition.

» To assess the role of VOC sensors in the early detection of diseases and their
combinations with ML models.

« To identify computational challenges and propose optimizations for any application in
real time.

Methodology.

The review provided an overview of studies related to the application of ML models in plant
disease detection, advances in imaging techniques in agriculture, and signal processing
frameworks applied in the analysis of VOCs, important in the identification of stress and disease
symptoms in plants.

Reviews were filtered to prioritize studies highly relevant to computer science, namely those
that introduced algorithmic novelties, brought improvement in computational efficiency, or
demonstrated real-world deployment scenarios. Special emphasis was given to deep learning
models, such as convolutional neural networks (CNNs), which have shown very high accuracy in
plant disease classification using image-based data.

The review further considered how machine learning models are coupled with advanced
signal processing techniques for VOC analysis, which plays a role in the early detection of plant
diseases prior to the appearance of visible symptoms. This approach promises to enhance speed
and reliability in disease diagnosis in agricultural environments. Such diverse methodologies will
be analyzed in the review to identify gaps and further propose areas where computational
innovations may be developed to enable efficiency and scalability in the detection of plant diseases
for improved agricultural practices.

Literature review.

Some common methods applied to image classification tasks in plant pathology include
supervised learning, mainly through the use of Convolutional Neural Networks. The ResNet and
InceptionNet are great at extracting complex visual features from plant images that could signal
disease symptoms in crops. The basic CNN model relies on the convolution operation, which is
for hierarchical feature extraction from the input image, from simple edges and textures to more
complex ones. The deeper the network is, the more abstract features it can capture. ResNet uses
residual connections to enable the network to train deeper architectures by preventing common
issues such as vanishing gradients. InceptionNet has used multiple filter sizes in each layer to take
simultaneous feature scales. Regarding the VOC analysis, Support Vector Machines have been
adapted to classify the VOC patterns emitted from plants under stress due to infection or pest
infestation. The SVMs work to seek a hyperplane in the high-dimensional space that will optimally
separate different data classes. Applied to VOC data, SVMs can identify if a plant is healthy or
diseased based on their chemical signatures, thus providing added diagnostic power to the
techniques already applied [5].

Advanced models in deep learning, such as Transformers and Graph Neural Networks, have
just started showing promise for the fusion of multimodal data, where both images and VOC
signals are integrated toward better comprehension of plant health. Transformers, originally
developed for natural language processing, make use of attention mechanisms in focusing on
important features in sequences of data, such as time-series VOC signals. This makes them suitable
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for combining sequential data with other types of features, such as visual data. On the other hand,
GNNSs are appropriate for tasks where data points are interrelated, especially because they can
model this relationship through nodes and edges in a graph. For example, GNNs can be used to
capture dependencies between different plant features, such as the spatial distribution of disease
symptoms, or the correlation between different VOC signals emitted over time. According to
Domingues et al. (2022), these architectures can process sequential or graph-based data, which is
crucial when combining time-series data (such as VOC emissions) with image-based features [6].
Mohanty et al. (2016) noted, these models have performed well, especially in early disease
detection across different crops, with some studies reporting accuracy above 92% [3].

Computer vision techniques have enlightened plant disease detection, offering sophisticated
methodologies for identifying and segmenting diseased regions in plant images. One of the major
roadblocks in this area is lack of labeled data, and that has consequences on how efficient the
machine learning models can really get. Data augmentation techniques like rotation, scaling, and
image synthesis through Generative Adversarial Networks are proved to be effective in battling
this ill. Lightweight models such as MobileNet can be optimized for such environments where a
trade-off between computing efficiency and detection is paramount. In fact, recent examples have
demonstrated the successful deployment of deep learning models on such edge devices for real-
time disease detection and low latency [7]. In fact, DeepLab and U-Net show promising
performances in segmenting damaged tissue of diseased leaves from the healthy ones of the plants.
These models are of utmost importance in precision agriculture as they provide very much detailed
and accurate disease mapping. Research has indicated that the performance of detection accuracy
in various plant diseases could be boosted by combining CNNs with semantic segmentation.
According to Alomar et al. (2023), the use of a U-net facilitates further segmenting the diseased
portion from the healthy part of the infected plant, allowing integrated management practices, thus
reducing pesticide application for targeted treatment [8].

In particular, the electronic nostrils or olfactory technologies depend greatly on signal
processing and machine learning methodologies that enhance recognition and classification of
specific odors like VOCs associated with diseases. These systems rely on efficient content
extraction, enabling accurate counting of willing odors. Usually, e-noses noise preprocessing
involves methods like Fast Fourier Transform (FFT) and wavelet decomposition, which improve
the quality of signals by filtering out irrelevant noise and focusing on the relevant features that
represent the odors. It makes a time-domain sensor response into a frequency domain and can thus
be used to identify periodic patterns of some odors. On the other hand, wavelet decomposition
disentangles signal components with the ability to capture both frequency and time aspects, and
thus is excellent for describing the complicated signal behavior commonly found in VOC detection

[9].

Another critical stage is dimensionality reduction in the processing pipeline. Principal
Component Analysis (PCA) is typically used for reducing the complexity of the VOC data,
transforming it into a lower-dimensional subspace for a better explanation of the most relevant
features of the data. This simplification improves the performances of different classification
models by reducing their overfitting and computational burden. t-SNE (t-distributed Stochastic
Neighbor Embedding) is another helpful method that allows visualizing high-dimensional data in
two or three dimensions to understand how different VOCs cluster together [10].

Currently, the methods used for detecting diseases based on VOCs face several challenges.
The primary challenge is the sensitivity of these methods to environmental factors since the
emission of VOCs can vary due to humidity, temperature, and plant physiology, resulting in
inconsistent detection values. Next is the data complexity, which requires good preprocessing
methods like the Fast Fourier Transform (FFT) and wavelet decomposition to treat noises and
bring out meaningful patterns. Limited classification accuracy is another killer, since VOC sensors
do great with early detection but lack specificity as compared with image-based methods in the
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classification of diseases. Moreover, the factors regarding price and maintenance are sort of a
financial constraint, since the VOC sensors require periodic calibration and upkeep that easily
outprice them for applications in widespread agriculture. Yet another limit in the applicability of
VOC sensors is that most of the models are trained for very specific plant species, which makes it
difficult to generalize results across different crops and environmental conditions.

In addressing such limitations several solutions can be implemented: From calibration,
which can enhance and standardize VOC detection protocols, thereby minimizing any
environmental vagaries affecting sensor readings. Multimodal fusion of VOC data with image-
based analyses has the potential to enhance classification through a coupling of both data sources.
Optimizing signal processing for VOC-based models using dimensionality reduction techniques,
including Principal Component Analysis PCA) and t-SNE, can improve their performance by
extracting more relevant features. The development of low-cost VOC sensors is crucial for
broadening the reach of this technology to farmers by relieving them of the burden of using an
expensive high-end sensor. Transfer learning for cross-crop model training will also improve the
generalizability of VOC sensor models by allowing models trained on one plant species to more
readily adapt to varied agricultural environments.

The assimilation of advanced signal processing with machine learning technologies is the
hallmark that will put e-noses at a whole new level in the prompt, non-invasive, and real-time
monitoring of various diseases and gases-impressive achievements in the diagnostic technology
field.

Table 1 — Comparative analysis of machine learning methods for plant disease detection

Study Machine Object of Effective Limitations Referen

Learning research ness (%) ce
Method

Review of the State | DBN Plant leaves | 96-97.5 | e Small datasets and limited [11]

of the Art of Deep (unsupervised image diversity hinder model

Learning for Plant DL model) effectiveness.

Dlseasgs: A Broad e Early symptoms and

A_naIySI_s and irregular lesion shapes

discussion (2020) complicate detection.

e Environmental factors
affect accuracy.

e Automated labeling and
hyperspectral imaging are
underdeveloped.

e Similar diseases require
specialized datasets and robust

validation.
Real-time plant DCDM Plant leaf 98.78 | e Model accuracy may be [12]
health assessment disease affected by inconsistent real-
via implementing world backgrounds.
cloud-based e Limited to specific plant
scalable transfer species (25 classes).
learning on AWS e Future scalability may
DeepLens (2020) require more species and multi-

spectral testing.

Tomato diseases YOLOV3 Tomato 92.39 e May require fine-tuning for [13]
and pest’s detection diseases and other types of crops or pests.

based on improved insect pest’s e Performance may vary

Yolo V3 detection with non-standard resolutions
Convolutional or highly complex

neural network environments.
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(2020)

e Sensitive to very small
object sizes, though
improvements are made in this
area.

Classification of
citrus plant diseases
using deep transfer
Learning (2021)

MobileNetv2
and
DenseNet201
(transfer
learning +
feature fusion)

Classificatio
n of citrus
plant
diseases

95.7

e Specific to citrus, may not
apply to other crops.

¢ Relies on MobileNetv2 and
DenseNet201, which may not
generalize well.

e Feature fusion increases
processing time.

[14]

Cucumber disease
recognition using
machine learning
and transfer learning
(2021)

Traditional ML
(Random
Forest) &
Transfer
Learning
(MobileNetV2)

Cucumber
disease
detection

93.23

e Limited data available for
model training, affecting
performance and recognition
accuracy.

e High dependency on
specific hardware, which may
not be universally accessible.

e Computationally expensive
methods, requiring significant
processing power.

e High costs associated with
implementing advanced
techniques, such as deep
learning and hyperspectral
imaging.

e Narrow scope, as most
studies focus on a limited
number of diseases in cucumber
crops.

[15]

Image-based Onion
Disease (Purple
Blotch) Detection
using Deep
Convolutional
Neural Network
(2021)

Deep
Convolutional
Neural
Networks
(CNN)

Onion crop
disease
classificatio
n (Alternaria
porri)

85.47

e The small dataset may
reduce the model's ability to
generalize and affect
robustness.

e Performance varies, with
better results observed when
using a batch size of 16.

e The training process is
resource-intensive and requires
significant computational
power.

e Without a sufficiently large
dataset, overfitting is a concern.
e Image preprocessing and
augmentation play a crucial role
in determining accuracy.

[16]

Deep learning-based
segmentation and
classification of leaf
images for detection
of tomato plant
disease (2022)

Deep CNN

Plant leaves
diseases and
pests

99-99.2

e Relies on a benchmark
dataset.

e Needs more validation in
diverse environments.

e Requires significant
computational resources.

e Real-time application not
fully evaluated.

e User experience needs
further assessment.

(3]

An improved
YOLOv5-based
vegetable disease

YOLOv5s
(object detection
model)

Tomato
virus disease

93.1

e |ong training time due to
inadequate optimization.

e Needs reduction in model

[17]
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detection method size and complexity.

(2022) e Further development
needed for mobile device
deployment.

e Dataset may lack real-
world diversity.

Detection and CNN Tomato 88.17 e Limited to tomato crops. [18]

classification of plant e Testing accuracy could be

tomato crop disease diseases improved.

ﬁihﬁ%fggg\;\%‘;&'onal e Needs adjustments for real-

(2022) world conditions.

Tomato fruit disease | CNN with SDD | Tomato 98.8 e Limited to controlled [19]

detection based on Disease environments, making real-

improved single Detection world application challenging.
shot detection e Small datasets restrict the
algorithm (2023) model’s ability to generalize to
new data.
e Pre-trained models may not
be optimized for specific
datasets, affecting accuracy.
e Additional processing may
be needed to improve accuracy,
adding complexity.

A Framework for Enhanced Detection of [ 99.5(Go | e High-quality image data is [20]

Agriculture Plant GoogleNet, tomato fruit | ogleNet | necessary for accurate

Disease Prediction MobileNetV2, diseases with detection.

using Deep SGD, Adam Adam) | ¢ The method may not

Learning Classifier | Optimizer generalize well to all types of

(2023) plants.

e Performance can decrease
when using certain optimizers
like RMSProp and Adamax.

Brinjal leaf diseases | Deep CNN Leaf disease 93.30 e Data imbalance could [21]

detection based on detection in (with affect the performance of the

discrete Shearlet brinjal fusion) | model, especially with unequal
transform_ and Deep class representation.

Convolutional e The results of the study

Neural Network were not compared or

(2023) benchmarked against previous
research in the field.

e Image size variation across
classes could potentially
introduce inconsistencies in the
model's performance.

Sustainable smart MobileNet Tomato 84.49 | e Requires large, diverse [22]

system for (convolutional disease datasets for accurate model

vegetables plant neural network) performance.

disease detection: _ e Struggles with generalizing

Four Vegetable case MobileNet Cucumber 97.65 across different environments

studies (2024) (convolutional disease or new diseases.

neural e High com putational power
network) needed, limiting real-time
application on low-resource
CNN Lettuce 100 devices.
disease e Challenges in detecting
early or subtle disease
symptoms effectively.
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Machine vision K-means Brinjals 95.9 e Small dataset, which may [23]

algorithm for clustering disease limit generalizability.

detection and e High computational cost

maturity prediction and complexity.

of Brinjal (2024) e Challenges in accurately
labeling brinjals due to
environmental factors.

e Inconsistent lighting and
device variability affecting
detection.

e Difficulty in detecting
partially occluded brinjals.

Apple varieties Deep features, Apple 99.77 e Small dataset of only 10 [24]

classification using | PCA and ML disease apple varieties.

deep features and e Misclassification due to

machine learning class variability.

(2024) o Real-world applicability
requires more varied lighting
and image acquisition setups.
¢ Ripening stage affects
classification accuracy.

Vegetable disease YOLOV8n- Vegetable 82 e Model tested on a self-built [25]

detection using an vegetable model | disease dataset, limiting generalization

improved YOLOV8 to other environments.
algorithm in the e Focus on greenhouse
greenhouse plant settings may not fully account
environment (2024) for outdoor variations.
e Need for streamlining the
model for embedded hardware
platforms.
e Further development
needed for real-time video
capture and disease alerts.

Enhanced PointRend Green gram 68.5 e Custom dataset used, [26]

rendering-based pod disease limiting generalization to other

approach for datasets.

improved quality of e Challenges in field

instance environments due to similarity

segmentation in between pods and background
detecting green (leaves).

gram (Vigna e Need for more diverse

Rediata) pods dataset (including diseased

(2024) pods) to improve robustness.

ViT-SmartAgri: Vision Tomato 95.7 e Accuracy depends on [27]

Vision Transformer | transformer diseases dataset and setup.

and Smartphone- (ViT) e VIiT has slightly lower

Based Plant Disease accuracy than some other

Detection for Smart models.

Agriculture (2024) e Model complexity may
affect deployment in low-
resource settings.

e Performance evaluation
should consider more than just
accuracy.
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Efficiency of machine learning models for plant disease detection

DBN -

DCDM -+

YOLOV3 4

MobileNetv2 + DenseNet201
Random Forest + MobileNetV2 4
CNN 1

Deep CNN

YOLOV5s

Model

CNN + SDD -

GoogleNet + MobileNetV2 -
MobileNet 4

Kmeans

Deep Features + ML
YOLOVSN

PointRend

VIT 4

T T T T T T T
60 65 70 75 80 85 90 95 100
Efficiency (%)

Figure 1 — Efficiency comparison of machine learning models for plant disease detection
according to the table

Results and Discussion.

The review of research papers is shown in Table 1 and Figure 1, which have been addressed
to bring out trends and gaps in machine learning (ML) and olfactory technologies that can be
harnessed for vegetable disease detection while emphasizing some factors such as type of
technology, dataset limitations, resource efficiency, and multimodal data integration. They
include:

Type of technology employed. Often integrated with VOC detectors into CNNs for plant
disease detection from images, in which CNNs showed up high accuracies’ prediction capability.
The drawback is, VOC sensors developed only for early detection and not for classification
accuracy. But, may be integrated for effective detection especially in early detection cases.

Dataset characteristics. Most published literature employ relatively small, narrow datasets,
i.e. studies intended for few plant species or limited incidence-type plant diseases, which affect
the generalization of results. A massive, diverse dataset has definite improvement in screens
applicability and accuracy of diagnosis technology, yet it is very expensive or complex to establish.

Computational efficiency. There is high accuracy from deep learning, most especially CNN;
however, it needs high computational resources which would ultimately prevent being run in real-
time applications. Lightweight such as MobileNet and EfficientNet would maintain that equation
with good accuracy but less resources. Model pruning and quantization are also termed
optimization methods as applied to CNN for real-time use.

Multimodal data integration. Recognition capability is usually enhanced through the use of
image data and combined VOC signals; however, very few studies have explored successful fusion
of both data types within one model. Such further enriching would likely enhance disease detection
systems by using much increased strength from the integration of vision and chemical data.

Proposed Solutions:

Augmented Datasets. Examples include data augmentation and synthetic data generation
using GANSs for increasing dataset diversity, such as rare diseases or under-represented plant
species.

Lightweight and Optimized Models. With efficient CNN architectures like MobileNet or
EfficientNet, coupled with pruning and quantization, it becomes possible to obtain real-time
detection without compromising accuracy.

Cross-Modal Fusion. Building very complex architectures that can take in both image and
VOC data together might improve detection performance by combining the strengths of both data

types.
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Transfer Learning. This approach is where models that have been trained on huge, diverse
datasets can be transferred to specific crops for better generalization.

Conclusion. The integration of computer vision techniques and multimodal data analysis
offers a viable solution to the challenges currently faced in vegetable disease detection. By
optimizing computational efficiency, improving data diversity, and integrating sensor technologies
more effectively, it is possible to develop a robust, real-time disease detection system. While the
use of olfactory signals in conjunction with image data is still in its infancy, the potential for these
combined systems to transform plant disease diagnostics is significant, offering a path forward for
more accurate, scalable, and cost-effective solutions in agriculture.

Conflict of interest. The author(s) declare that there is no conflict of interest.
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KOKOHIC AYPYJIAPBIH KBIJITAM AHBIKTAYT'A APHAJIFAH
MAIINHAJIBIK OKBITY K9HE HUIC CE3Y TEXHOJIOT' USAJIAPBIHA IOJIY

AHoamna. OcimOixk aypyiapvii aHBIKMAY KA3ipel aybll WaApyaubliblebl YuliH ome MAaHbi30ul,
OUMKEHI YaAKMblLIbl OUACHO3 KOK €2iH WbIEbIHbIH  QUMAPAbIKMAll  a3aumaovl JicoHe OHIMOIIKMI
apmmulpaovl. Byn wony Mawunansix okbimy aoicmepine dcane MyibmumMooaibobl 0epekmepoi manoayea
Heziz0enzeH 03blK aypyaapobl aHbIKmaAy Jicyuenepin YculHaovl. Mawunanvlx oKbImyowvly apmypai
anzopummoepin, couviy iwinoe Koneomoyusnvlx Heuponowix sceninepdi (CNN), mpancpepnix oxvimy
mooenvoepin scone YOLO cuskmbr 0OwexminepOi amvblkmay 20iCMepiH JHCAH-)CAKMbL  CATLICHbIDY
arcypeizindi. Byn zepmmey éuzyanovl depexmepoi yuina opeanukanvik Kocvlivicmapowt (VOC) manoaymen
OIpikmipy OuasHOCMUKauvbly 0210iei MeH CeHIMOinieiH apmmulpambiibly Kepcemedi. byn odanada
KONOaHyea 60aambiH CHYMHUKMIK JICOHe ap3aH OAKbLIAy JiCYUenepin HaKmovl OaMblmyea MyMKIHOIKmep
autaovl. Teopusnvly mypavloan, OYA JHCYMbIC 2emepozendl OepeKkmepoi OIpikmipy cmpamecusiapvlH
a3ipaeyee JHeaHe OAapOblL HCEHIIOEM) HCIHe MUIMOIPEK emy VLiH mepeH HeUPOHObIK dceilepee Heai30eleeH
MOoOenvbdepdi oymaiiianovipyea viknai emeodi. [llonyoa dan ecinwinikme ociMOiK aypyiapvli aHbIKMAYEa
ApHANRAH  MACWMAOMANamvlH  JiCaHe OelliMOeNemin  MeXHON0UANapobl  d3ipieyee baca HaA3ap
ayoapuliaowl.

Tyitin co3dep: ocimoikmep aypyiapvii aHbIKMAY, MAUWUHATBIK OKbINY, KOHBOTIOYUSLIBIK HeUPOHObIK
arceninep, MobileNet, myremumooanvovr depexmep, Hakmol yaKplmmagol AHbIKMAY, AyblLl WAPY AULLLIbIZbL
mexnonoeusnapel, VOC damyuxmepi.

Ob30P MAIIMHHOI'O ObYYEHUA U OBOHSITEJIbHBIX TE}(HOJIOFI/Iﬁ
JJISA BBICTPOI'O BBISABJIEHUSA BOJIE3BHEU OBOLIEU

Annomauusn. Obnapyscenue 6one3Hell pacmeHull umeem peuiaroujee 3HaveHue 0 CO8PEMEeHHO20
CeNbCKO20 XO3AUCMBA, NOCKOAbKY CE0EBPEMEHHAs OUACHOCIUKA MOJCEM 3HAYUMENbHO CHU3UMb ROMepu
ypodHcas U NOBbICUMb NPOU3BOOUMENbHOCMb. B smom o0630pe npedcmasnensvt nepedogvie cucmemsl
obHapysicenus bonesHell, OCHOBAHHbIE HA MeMOoOax MAWUHHO20 00VHEeHUs U MYTbMUMOOAIbHO20 AHATU3A
OdanHbix. bvlio npogedeHo 8cecmopoHHee CpasHeHUe PAsIUYHbIX AN2OPUMMO8 MAWUHHO20 00V4eHUs,
ekaouas ceepmounvie Hetiponnvie cemu (CNN), modemu mparncghepnoco o0Oyuenuss u Mmemoovl
obHapydcenuss 06vexkmos, maxue xak YOLO. Omo uccredoganue OemoHCmMpupyem, 4mo codemanue
BU3YAILHLIX OAHHBIX C AHATUZOM Jemyuux opearudeckux coeoutnenuii (JIOC) nogvluiaem mounocmov u
HAOEHCHOCMb OUACHOCMUKU. MO OMKPbIEAem 03MOICHOCIU 018 PEAnbHOU pa3padoOmKu CRYMHUKOBbIX
U Hedopo2ux cucmem MOHUMOPUHEA, KOMOPbIE MONCHO UCHONb3068AMb 6 NOJEbIX VCI0GUSIX.
Teopemuuecku, sma paboma cnocobcmeyem pazpabomre cmpameuii UHmMe2payuu pasHopoOHbIX OAHHBIX
U onmuMu3ayUYU Mooerell Ha OCHO8e 2YOOKUX HEUPOHHbIX cemell, Ymodbl coeaams ux 6oaee iecKUMU u
aghpexmusnvimu. B 0630pe ocoboe sHumanue yoenaemcs pazpabomxe Macumaodupyemvix u ad0anmueHsix
mexHoao2ull 01151 0OHApyHceHUs Doe3Hell pACeHUll 8 MOYHOM 3eMaedeuu.

Knrouesvle cnosa: obOnapyosicenue 6OonesHell pacmeHul, MAwuHHOe O0OYYEHUE, CEEPMOUHbLE
Hetipounvie cemu, MobileNet, myromumooanrvuvie Oanuvle, ONpedeneHue 6 pearbHOM GPEMeHU,
cenvbckoxosanucmeennvie mexnoao2uu, VOC oamuuxu.

ABTOpJap TypaJbl MaJiMeT

Hypranuesa CeimOat PhD, Astana IT university KommbroTepik umkeHepus kadeapachiHbig
AntpibaeBHa accucTeHT npodeccopsl, Actana K., Kazakcran
E-mail: symbat.nurgaliyeva@astanait.edu.kz
Haiiman HypGex Astana IT university, KomnbroTepiik umkeHepus kadeapacbiHbig
BaxwiTyIiel MarucTpanTel, Acrana K., Kazakcran, E-mail: 242756 @astanait.edu.kz
AnukanoBa Cantanat | Copcen AmamkoiioB ateiHaarsl LLbireic KazakcTan yHuBepcHuTeTi,
CaiinapOexoBHa KOMITBIOTEPITIK MOJICIB/IEY JKOHE aKIapaTThIK TEXHOJIOTHsIIAp KadeIpachiHbIH
KayBIMIACTHIPBIIFAH Mpodeccopsl, OckeMeH K., Kasakcran, E-mail:
ersal_7882@mail.ru

136


mailto:symbat.nurgaliyeva@astanait.edu.kz
mailto:242756@astanait.edu.kz
mailto:ersal_7882@mail.ru

A3aMaTTI>IK aBUAllA aKaACMUSCBIHBIH, KapHIbICHI

Ne1(36)2025

Caenienne 006 apTopax

Hypranuesa Crimbat

Accucrent npodeccop kadenpsl komnbloTepHol nHxenepun, PhD, Acrana

AntpiOaeBHa IT yauBepcuter, Actana, Kazaxcran

E-mail: symbat.nurgaliyeva@astanait.edu.kz
Haiiman HypGex MaructpaHT Kadeapbl KOMIBIOTEpHOH HHKeHepuH, Actana, Kazaxcran, E-
BaxwiTyIibl mail: 242756 @astanait.edu.kz
AmnkanoBa Canranatr | JloneHT kadeapbl KOMIBIOTEPHOTO MOACIMPOBAHIS ¥ HHPOPMAITHOHHBIX
CaitmapbexoBHa texaonoruit, PhD, Bocrouno-Kazaxcraunckuit yausepcureT nmenn CapceHa

AwmamkoioBa, Ycrh-Kamenoropcek, Kasaxcran, E-mail: ersal 7882@mail.ru

Information about the authors

Nurgaliyeva Symbat
Altybaevna

Assistant professor of department of computer engineering, PhD, Astana IT
University, Astana, Kazakhstan, E-mail:
symbat.nurgaliyeva@astanait.edu.kz

Naiman Nurbek
Bakhytuly

Master student of department of computer engineering, Astana IT
university, Astana, Kazakhstan, E-mail: 242756 @astanait.edu.kz

Adikova Saltanat
Saylarbekovna

Associate Professor of the Department of Computer Modeling and
Information Technology, PhD, Sarsen Amanzholov East Kazakhstan
university, Ust-Kamenogorsk, Kazakhstan

E-mail: ersal 7882@mail.ru

137



mailto:symbat.nurgaliyeva@astanait.edu.kz
mailto:242756@astanait.edu.kz
mailto:ersal_7882@mail.ru
mailto:symbat.nurgaliyeva@astanait.edu.kz
mailto:242756@astanait.edu.kz
mailto:ersal_7882@mail.ru

