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A REVIEW OF MACHINE LEARNING AND OLFACTORY TECHNOLOGIES FOR 

RAPID VEGETABLE DISEASE DETECTION 

 

Abstract. Plant disease detection is crucial to modern-day agriculture because timely 

diagnosis can reduce the loss of crops to an appreciable level and improve productivity. This 

review presents advanced disease detection systems based on machine learning techniques and 

multimodal data analysis. A comprehensive comparison of different machine learning algorithms, 

including convolutional neural networks (CNNs), transfer learning models, and object detection 

methods like YOLO, has been done. This study demonstrates that combining visual data with the 

analysis of volatile organic compounds (VOC) enhances the accuracy and reliability of the 

diagnosis. This provides opportunities for the actual development of satellite and cheap systems 

for monitoring operable in the field. Theoretically, this work contributes to developing strategies 

for integrating heterogeneous data and optimizing deep neural network models to make them 

lightweight and effective. The review emphasizes developing scalable and adaptive technologies 

for plant disease detection within precision agriculture. 

Keywords: plant disease detection, machine learning, convolutional neural networks, 

MobileNet, multimodal data, real-time detection, agricultural technology, VOC sensors. 

 

Introduction.  

The rapid detection of plant diseases, particularly in vegetables, plays a crucial role in 

ensuring both food security and agricultural sustainability. Traditional diagnostic methods, such 

as visual inspection, microscopy, and biochemical analysis, are widely used but have significant 

drawbacks. These methods tend to be slow, labor-intensive, and susceptible to human error, 

especially when differentiating between diseases with similar symptoms or when infections are in 

their latent stages. Moreover, these approaches often result in delayed interventions, which can 

exacerbate the spread of diseases and lead to substantial crop losses. With the increasing demand 

for quicker and more reliable plant disease detection, advances in computer science, particularly 

machine learning (ML) and computer vision (CV), have emerged as transformative solutions. 

Recent research has pointed out that deep learning techniques, such as CNN, can effectively 

automate the process of plant disease detection through plant leaves images. This method has 

identified diseases using their symptoms, which were visible; hence, these techniques became 

effective and less time-consuming than the traditional methods. The process usually starts by 

acquiring high-resolution images of both healthy and infected plants, mostly using Internet of 

Things-enabled sensors deployed in agricultural fields. High-quality images are quite essential for 

the perfection of disease detection; hence, different pre-processing steps like noise reduction, 

distortion correction, and color space conversion are performed to optimize the images for further 

analysis [1]. These systems save a lot of money, reduce laborious work, and offer quicker and 

more accurate results, hence improving the overall management of crop health by automating 

disease diagnosis [2]. For example, deep learning in plant disease detection is feasible with an 
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incredible accuracy of 99.35% [3]. Another interesting aspect reviewed was the integration of IoT-

based sensors and imaging technologies for real-time data collection in the field and monitoring 

of diseases [4]. 

Purpose and objectives: 

The study aims to analyze and compare existing machine learning and olfactory technologies 

for vegetable disease detection in terms of their strengths, weaknesses, and applications for real-

world agricultural purposes. The main objectives are as follows:  

• To assess the feasibility of CNNs and other deep learning techniques for plant disease 

recognition. 

• To assess the role of VOC sensors in the early detection of diseases and their 

combinations with ML models. 

• To identify computational challenges and propose optimizations for any application in 

real time. 

Methodology.  

The review provided an overview of studies related to the application of ML models in plant 

disease detection, advances in imaging techniques in agriculture, and signal processing 

frameworks applied in the analysis of VOCs, important in the identification of stress and disease 

symptoms in plants. 

Reviews were filtered to prioritize studies highly relevant to computer science, namely those 

that introduced algorithmic novelties, brought improvement in computational efficiency, or 

demonstrated real-world deployment scenarios. Special emphasis was given to deep learning 

models, such as convolutional neural networks (CNNs), which have shown very high accuracy in 

plant disease classification using image-based data. 

The review further considered how machine learning models are coupled with advanced 

signal processing techniques for VOC analysis, which plays a role in the early detection of plant 

diseases prior to the appearance of visible symptoms. This approach promises to enhance speed 

and reliability in disease diagnosis in agricultural environments. Such diverse methodologies will 

be analyzed in the review to identify gaps and further propose areas where computational 

innovations may be developed to enable efficiency and scalability in the detection of plant diseases 

for improved agricultural practices. 

Literature review.  

Some common methods applied to image classification tasks in plant pathology include 

supervised learning, mainly through the use of Convolutional Neural Networks. The ResNet and 

InceptionNet are great at extracting complex visual features from plant images that could signal 

disease symptoms in crops. The basic CNN model relies on the convolution operation, which is 

for hierarchical feature extraction from the input image, from simple edges and textures to more 

complex ones. The deeper the network is, the more abstract features it can capture. ResNet uses 

residual connections to enable the network to train deeper architectures by preventing common 

issues such as vanishing gradients. InceptionNet has used multiple filter sizes in each layer to take 

simultaneous feature scales. Regarding the VOC analysis, Support Vector Machines have been 

adapted to classify the VOC patterns emitted from plants under stress due to infection or pest 

infestation. The SVMs work to seek a hyperplane in the high-dimensional space that will optimally 

separate different data classes. Applied to VOC data, SVMs can identify if a plant is healthy or 

diseased based on their chemical signatures, thus providing added diagnostic power to the 

techniques already applied [5]. 

Advanced models in deep learning, such as Transformers and Graph Neural Networks, have 

just started showing promise for the fusion of multimodal data, where both images and VOC 

signals are integrated toward better comprehension of plant health. Transformers, originally 

developed for natural language processing, make use of attention mechanisms in focusing on 

important features in sequences of data, such as time-series VOC signals. This makes them suitable 
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for combining sequential data with other types of features, such as visual data. On the other hand, 

GNNs are appropriate for tasks where data points are interrelated, especially because they can 

model this relationship through nodes and edges in a graph. For example, GNNs can be used to 

capture dependencies between different plant features, such as the spatial distribution of disease 

symptoms, or the correlation between different VOC signals emitted over time. According to 

Domingues et al. (2022), these architectures can process sequential or graph-based data, which is 

crucial when combining time-series data (such as VOC emissions) with image-based features [6]. 

Mohanty et al. (2016) noted, these models have performed well, especially in early disease 

detection across different crops, with some studies reporting accuracy above 92% [3]. 

Computer vision techniques have enlightened plant disease detection, offering sophisticated 

methodologies for identifying and segmenting diseased regions in plant images. One of the major 

roadblocks in this area is lack of labeled data, and that has consequences on how efficient the 

machine learning models can really get. Data augmentation techniques like rotation, scaling, and 

image synthesis through Generative Adversarial Networks are proved to be effective in battling 

this ill. Lightweight models such as MobileNet can be optimized for such environments where a 

trade-off between computing efficiency and detection is paramount. In fact, recent examples have 

demonstrated the successful deployment of deep learning models on such edge devices for real-

time disease detection and low latency [7]. In fact, DeepLab and U-Net show promising 

performances in segmenting damaged tissue of diseased leaves from the healthy ones of the plants. 

These models are of utmost importance in precision agriculture as they provide very much detailed 

and accurate disease mapping. Research has indicated that the performance of detection accuracy 

in various plant diseases could be boosted by combining CNNs with semantic segmentation. 

According to Alomar et al. (2023), the use of a U-net facilitates further segmenting the diseased 

portion from the healthy part of the infected plant, allowing integrated management practices, thus 

reducing pesticide application for targeted treatment [8]. 

In particular, the electronic nostrils or olfactory technologies depend greatly on signal 

processing and machine learning methodologies that enhance recognition and classification of 

specific odors like VOCs associated with diseases. These systems rely on efficient content 

extraction, enabling accurate counting of willing odors. Usually, e-noses noise preprocessing 

involves methods like Fast Fourier Transform (FFT) and wavelet decomposition, which improve 

the quality of signals by filtering out irrelevant noise and focusing on the relevant features that 

represent the odors. It makes a time-domain sensor response into a frequency domain and can thus 

be used to identify periodic patterns of some odors. On the other hand, wavelet decomposition 

disentangles signal components with the ability to capture both frequency and time aspects, and 

thus is excellent for describing the complicated signal behavior commonly found in VOC detection 

[9]. 

Another critical stage is dimensionality reduction in the processing pipeline. Principal 

Component Analysis (PCA) is typically used for reducing the complexity of the VOC data, 

transforming it into a lower-dimensional subspace for a better explanation of the most relevant 

features of the data. This simplification improves the performances of different classification 

models by reducing their overfitting and computational burden. t-SNE (t-distributed Stochastic 

Neighbor Embedding) is another helpful method that allows visualizing high-dimensional data in 

two or three dimensions to understand how different VOCs cluster together [10]. 

Currently, the methods used for detecting diseases based on VOCs face several challenges. 

The primary challenge is the sensitivity of these methods to environmental factors since the 

emission of VOCs can vary due to humidity, temperature, and plant physiology, resulting in 

inconsistent detection values. Next is the data complexity, which requires good preprocessing 

methods like the Fast Fourier Transform (FFT) and wavelet decomposition to treat noises and 

bring out meaningful patterns. Limited classification accuracy is another killer, since VOC sensors 

do great with early detection but lack specificity as compared with image-based methods in the 
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classification of diseases. Moreover, the factors regarding price and maintenance are sort of a 

financial constraint, since the VOC sensors require periodic calibration and upkeep that easily 

outprice them for applications in widespread agriculture. Yet another limit in the applicability of 

VOC sensors is that most of the models are trained for very specific plant species, which makes it 

difficult to generalize results across different crops and environmental conditions. 

In addressing such limitations several solutions can be implemented: From calibration, 

which can enhance and standardize VOC detection protocols, thereby minimizing any 

environmental vagaries affecting sensor readings. Multimodal fusion of VOC data with image-

based analyses has the potential to enhance classification through a coupling of both data sources. 

Optimizing signal processing for VOC-based models using dimensionality reduction techniques, 

including Principal Component Analysis PCA) and t-SNE, can improve their performance by 

extracting more relevant features. The development of low-cost VOC sensors is crucial for 

broadening the reach of this technology to farmers by relieving them of the burden of using an 

expensive high-end sensor. Transfer learning for cross-crop model training will also improve the 

generalizability of VOC sensor models by allowing models trained on one plant species to more 

readily adapt to varied agricultural environments. 

The assimilation of advanced signal processing with machine learning technologies is the 

hallmark that will put e-noses at a whole new level in the prompt, non-invasive, and real-time 

monitoring of various diseases and gases-impressive achievements in the diagnostic technology 

field. 

 

Table 1 – Comparative analysis of machine learning methods for plant disease detection 

 

Study Machine 

Learning 

Method 

Object of 

research 

Effective

ness (%) 

Limitations Referen

ce 

Review of the State 

of the Art of Deep 

Learning for Plant 

Diseases: A Broad 

Analysis and 

discussion (2020) 

DBN 

(unsupervised 

DL model) 

Plant leaves 96-97.5 • Small datasets and limited 

image diversity hinder model 

effectiveness. 

• Early symptoms and 

irregular lesion shapes 

complicate detection. 

• Environmental factors 

affect accuracy. 

• Automated labeling and 

hyperspectral imaging are 

underdeveloped. 

• Similar diseases require 

specialized datasets and robust 

validation. 

[11] 

 

Real-time plant 

health assessment 

via implementing 

cloud-based 

scalable transfer 

learning on AWS 

DeepLens (2020) 

DCDM Plant leaf 

disease  

98.78 • Model accuracy may be 

affected by inconsistent real-

world backgrounds. 

• Limited to specific plant 

species (25 classes). 

• Future scalability may 

require more species and multi-

spectral testing. 

[12] 

 

Tomato diseases 

and pest’s detection 

based on improved 

Yolo V3 

Convolutional 

neural network 

YOLOv3 Tomato 

diseases and 

insect pest’s 

detection 

92.39 • May require fine-tuning for 

other types of crops or pests. 

• Performance may vary 

with non-standard resolutions 

or highly complex 

environments. 

[13] 
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(2020) • Sensitive to very small 

object sizes, though 

improvements are made in this 

area. 

Classification of 

citrus plant diseases 

using deep transfer 

Learning (2021) 

MobileNetv2 

and 

DenseNet201 

(transfer 

learning + 

feature fusion) 

Classificatio

n of citrus 

plant 

diseases 

95.7 • Specific to citrus, may not 

apply to other crops. 

• Relies on MobileNetv2 and 

DenseNet201, which may not 

generalize well. 

• Feature fusion increases 

processing time. 

[14] 

 

Cucumber disease 

recognition using 

machine learning 

and transfer learning 

(2021) 

Traditional ML 

(Random 

Forest) & 

Transfer 

Learning 

(MobileNetV2) 

Cucumber 

disease 

detection 

93.23 • Limited data available for 

model training, affecting 

performance and recognition 

accuracy. 

• High dependency on 

specific hardware, which may 

not be universally accessible. 

• Computationally expensive 

methods, requiring significant 

processing power. 

• High costs associated with 

implementing advanced 

techniques, such as deep 

learning and hyperspectral 

imaging. 

• Narrow scope, as most 

studies focus on a limited 

number of diseases in cucumber 

crops. 

[15] 

 

Image-based Onion 

Disease (Purple 

Blotch) Detection 

using Deep 

Convolutional 

Neural Network 

(2021) 

Deep 

Convolutional 

Neural 

Networks 

(CNN) 

Onion crop 

disease 

classificatio

n (Alternaria 

porri) 

85.47 • The small dataset may 

reduce the model's ability to 

generalize and affect 

robustness. 

• Performance varies, with 

better results observed when 

using a batch size of 16. 

• The training process is 

resource-intensive and requires 

significant computational 

power. 

• Without a sufficiently large 

dataset, overfitting is a concern. 

• Image preprocessing and 

augmentation play a crucial role 

in determining accuracy. 

[16] 

 

Deep learning-based 

segmentation and 

classification of leaf 

images for detection 

of tomato plant 

disease (2022) 

Deep CNN Plant leaves 

diseases and 

pests 

99-99.2 • Relies on a benchmark 

dataset. 

• Needs more validation in 

diverse environments. 

• Requires significant 

computational resources. 

• Real-time application not 

fully evaluated. 

• User experience needs 

further assessment. 

[3] 

 

An improved 

YOLOv5-based 

vegetable disease 

YOLOv5s 

(object detection 

model) 

Tomato 

virus disease 

93.1 • Long training time due to 

inadequate optimization. 

• Needs reduction in model 

[17] 
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detection method 

(2022) 

size and complexity. 

• Further development 

needed for mobile device 

deployment. 

• Dataset may lack real-

world diversity. 

Detection and 

classification of 

tomato crop disease 

using convolutional 

neural network 

(2022) 

CNN Tomato 

plant 

diseases 

88.17 • Limited to tomato crops. 

• Testing accuracy could be 

improved. 

• Needs adjustments for real-

world conditions. 

[18] 

 

Tomato fruit disease 

detection based on 

improved single 

shot detection 

algorithm (2023) 

CNN with SDD Tomato 

Disease 

Detection 

98.8 • Limited to controlled 

environments, making real-

world application challenging. 

• Small datasets restrict the 

model’s ability to generalize to 

new data. 

• Pre-trained models may not 

be optimized for specific 

datasets, affecting accuracy. 

• Additional processing may 

be needed to improve accuracy, 

adding complexity. 

[19] 

 

A Framework for 

Agriculture Plant 

Disease Prediction 

using Deep 

Learning Classifier 

(2023) 

Enhanced 

GoogleNet, 

MobileNetV2, 

SGD, Adam 

Optimizer 

Detection of 

tomato fruit 

diseases 

99.5(Go

ogleNet 

with 

Adam) 

• High-quality image data is 

necessary for accurate 

detection. 

• The method may not 

generalize well to all types of 

plants. 

• Performance can decrease 

when using certain optimizers 

like RMSProp and Adamax. 

[20] 

 

Brinjal leaf diseases 

detection based on 

discrete Shearlet 

transform and Deep 

Convolutional 

Neural Network 

(2023) 

Deep CNN Leaf disease 

detection in 

brinjal  

93.30 

(with 

fusion) 

• Data imbalance could 

affect the performance of the 

model, especially with unequal 

class representation. 

• The results of the study 

were not compared or 

benchmarked against previous 

research in the field. 

• Image size variation across 

classes could potentially 

introduce inconsistencies in the 

model's performance. 

[21] 

 

Sustainable smart 

system for 

vegetables plant 

disease detection: 

Four vegetable case 

studies (2024) 

 

MobileNet 

(convolutional 

neural network) 

Tomato 

disease 

84.49 • Requires large, diverse 

datasets for accurate model 

performance. 

• Struggles with generalizing 

across different environments 

or new diseases. 

• High com putational power 

needed, limiting real-time 

application on low-resource 

devices. 

• Challenges in detecting 

early or subtle disease 

symptoms effectively. 

[22] 

 

MobileNet 

(convolutional 

neural      

network) 

Cucumber 

disease 

97.65 

CNN  Lettuce 

disease 

100 
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Machine vision 

algorithm for 

detection and 

maturity prediction 

of Brinjal (2024) 

 

K-means 

clustering 

Brinjals 

disease 

95.9 • Small dataset, which may 

limit generalizability. 

• High computational cost 

and complexity. 

• Challenges in accurately 

labeling brinjals due to 

environmental factors. 

• Inconsistent lighting and 

device variability affecting 

detection. 

• Difficulty in detecting 

partially occluded brinjals. 

[23] 

 

Apple varieties 

classification using 

deep features and 

machine learning 

(2024) 

Deep features, 

PCA and ML 

Apple 

disease 

99.77 • Small dataset of only 10 

apple varieties. 

• Misclassification due to 

class variability. 

• Real-world applicability 

requires more varied lighting 

and image acquisition setups. 

• Ripening stage affects 

classification accuracy. 

[24] 

 

Vegetable disease 

detection using an 

improved YOLOv8 

algorithm in the 

greenhouse plant 

environment (2024) 

YOLOv8n-

vegetable model 

Vegetable 

disease 

82 • Model tested on a self-built 

dataset, limiting generalization 

to other environments. 

• Focus on greenhouse 

settings may not fully account 

for outdoor variations. 

• Need for streamlining the 

model for embedded hardware 

platforms. 

• Further development 

needed for real-time video 

capture and disease alerts. 

[25] 

 

Enhanced 

rendering-based 

approach for 

improved quality of 

instance 

segmentation in 

detecting green 

gram (Vigna 

Rediata) pods 

(2024) 

PointRend Green gram 

pod disease  

68.5 • Custom dataset used, 

limiting generalization to other 

datasets. 

• Challenges in field 

environments due to similarity 

between pods and background 

(leaves). 

• Need for more diverse 

dataset (including diseased 

pods) to improve robustness. 

[26] 

 

ViT-SmartAgri: 

Vision Transformer 

and Smartphone-

Based Plant Disease 

Detection for Smart 

Agriculture (2024) 

Vision 

transformer 

(ViT) 

Tomato 

diseases 

95.7 • Accuracy depends on 

dataset and setup. 

• ViT has slightly lower 

accuracy than some other 

models. 

• Model complexity may 

affect deployment in low-

resource settings. 

• Performance evaluation 

should consider more than just 

accuracy. 

[27] 

 



 

 Азаматтық авиация академиясының жаршысы                                                                                 №1(36)2025 
 

133 
 

 
Figure 1 – Efficiency comparison of machine learning models for plant disease detection 

according to the table 

 

Results and Discussion.  

The review of research papers is shown in Table 1 and Figure 1, which have been addressed 

to bring out trends and gaps in machine learning (ML) and olfactory technologies that can be 

harnessed for vegetable disease detection while emphasizing some factors such as type of 

technology, dataset limitations, resource efficiency, and multimodal data integration. They 

include:  

Type of technology employed. Often integrated with VOC detectors into CNNs for plant 

disease detection from images, in which CNNs showed up high accuracies’ prediction capability. 

The drawback is, VOC sensors developed only for early detection and not for classification 

accuracy. But, may be integrated for effective detection especially in early detection cases.  

Dataset characteristics. Most published literature employ relatively small, narrow datasets, 

i.e. studies intended for few plant species or limited incidence-type plant diseases, which affect 

the generalization of results. A massive, diverse dataset has definite improvement in screens 

applicability and accuracy of diagnosis technology, yet it is very expensive or complex to establish.  

Computational efficiency. There is high accuracy from deep learning, most especially CNN; 

however, it needs high computational resources which would ultimately prevent being run in real-

time applications. Lightweight such as MobileNet and EfficientNet would maintain that equation 

with good accuracy but less resources. Model pruning and quantization are also termed 

optimization methods as applied to CNN for real-time use.  

Multimodal data integration. Recognition capability is usually enhanced through the use of 

image data and combined VOC signals; however, very few studies have explored successful fusion 

of both data types within one model. Such further enriching would likely enhance disease detection 

systems by using much increased strength from the integration of vision and chemical data. 

Proposed Solutions: 

Augmented Datasets. Examples include data augmentation and synthetic data generation 

using GANs for increasing dataset diversity, such as rare diseases or under-represented plant 

species. 

Lightweight and Optimized Models. With efficient CNN architectures like MobileNet or 

EfficientNet, coupled with pruning and quantization, it becomes possible to obtain real-time 

detection without compromising accuracy. 

Cross-Modal Fusion. Building very complex architectures that can take in both image and 

VOC data together might improve detection performance by combining the strengths of both data 

types. 
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Transfer Learning. This approach is where models that have been trained on huge, diverse 

datasets can be transferred to specific crops for better generalization. 

Conclusion. The integration of computer vision techniques and multimodal data analysis 

offers a viable solution to the challenges currently faced in vegetable disease detection. By 

optimizing computational efficiency, improving data diversity, and integrating sensor technologies 

more effectively, it is possible to develop a robust, real-time disease detection system. While the 

use of olfactory signals in conjunction with image data is still in its infancy, the potential for these 

combined systems to transform plant disease diagnostics is significant, offering a path forward for 

more accurate, scalable, and cost-effective solutions in agriculture. 

Conflict of interest. The author(s) declare that there is no conflict of interest. 
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  КӨКӨНІС АУРУЛАРЫН ЖЫЛДАМ АНЫҚТАУҒА АРНАЛҒАН 

МАШИНАЛЫҚ ОҚЫТУ ЖӘНЕ ИІС СЕЗУ ТЕХНОЛОГИЯЛАРЫНА ШОЛУ 
 

Аңдатпа. Өсімдік ауруларын анықтау қазіргі ауыл шаруашылығы үшін өте маңызды, 

өйткені уақтылы диагноз қою егін шығынын айтарлықтай азайтады және өнімділікті 

арттырады. Бұл шолу Машиналық оқыту әдістеріне және мультимодальды деректерді талдауға 

негізделген озық ауруларды анықтау жүйелерін ұсынады. Машиналық оқытудың әртүрлі 

алгоритмдерін, соның ішінде конволюциялық нейрондық желілерді (CNN), трансферлік оқыту 

модельдерін және YOLO сияқты объектілерді анықтау әдістерін жан-жақты салыстыру 

жүргізілді. Бұл зерттеу визуалды деректерді ұшпа органикалық қосылыстарды (VOC) талдаумен 

біріктіру диагностиканың дәлдігі мен сенімділігін арттыратынын көрсетеді. Бұл далада 

қолдануға болатын спутниктік және арзан бақылау жүйелерін нақты дамытуға мүмкіндіктер 

ашады. Теориялық тұрғыдан, бұл жұмыс гетерогенді деректерді біріктіру стратегияларын 

әзірлеуге және оларды жеңілдету және тиімдірек ету үшін терең нейрондық желілерге негізделген 

модельдерді оңтайландыруға ықпал етеді. Шолуда дәл егіншілікте өсімдік ауруларын анықтауға 

арналған масштабталатын және бейімделетін технологияларды әзірлеуге баса назар 

аударылады. 

Түйін сөздер: өсімдіктер ауруларын анықтау, машиналық оқыту, конволюциялық нейрондық 

желілер, MobileNet, мультимодальды деректер, нақты уақыттағы анықтау, ауыл шаруашылығы 

технологиялары, VOC датчиктері. 

 

ОБЗОР МАШИННОГО ОБУЧЕНИЯ И ОБОНЯТЕЛЬНЫХ ТЕХНОЛОГИЙ 

ДЛЯ БЫСТРОГО ВЫЯВЛЕНИЯ БОЛЕЗНЕЙ ОВОЩЕЙ 
 

Аннотация. Обнаружение болезней растений имеет решающее значение для современного 

сельского хозяйства, поскольку своевременная диагностика может значительно снизить потери 

урожая и повысить производительность. В этом обзоре представлены передовые системы 

обнаружения болезней, основанные на методах машинного обучения и мультимодального анализа 

данных. Было проведено всестороннее сравнение различных алгоритмов машинного обучения, 

включая сверточные нейронные сети (CNN), модели трансферного обучения и методы 

обнаружения объектов, такие как YOLO. Это исследование демонстрирует, что сочетание 

визуальных данных с анализом летучих органических соединений (ЛОС) повышает точность и 

надежность диагностики. Это открывает возможности для реальной разработки спутниковых 

и недорогих систем мониторинга, которые можно использовать в полевых условиях. 

Теоретически, эта работа способствует разработке стратегий интеграции разнородных данных 

и оптимизации моделей на основе глубоких нейронных сетей, чтобы сделать их более легкими и 

эффективными. В обзоре особое внимание уделяется разработке масштабируемых и адаптивных 

технологий для обнаружения болезней растений в точном земледелии. 

Ключевые слова: обнаружение болезней растений, машинное обучение, сверточные 

нейронные сети, MobileNet, мультимодальные данные, определение в реальном времени, 

сельскохозяйственные технологии, VOC датчики. 
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